Spatial Enhancement of MODIS-based Images of Leaf Area Index: Application to the Boreal Forest Region of Northern Alberta, Canada
نویسندگان
چکیده
Leaf area index (LAI) is one of the most commonly used ecological variables in describing forests. Since 2000, 1-km resolution Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composites of LAI have been operationally available from the National Aeronautics and Space Administration (NASA), USA, at no cost to the user. In this paper, we present a simple protocol to enhance the spatial resolution of NASA-produced LAI composites to 250-m resolution. This is done by fusing MODIS-based estimates of enhanced vegetation index (EVI), consisting of 16-day 250-m resolution composites (also from NASA), with estimates of LAI. We apply the protocol to derive 250-m resolution maps of LAI for the boreal forest region of northern Alberta, Canada. Data fusion was possible in this study because of the inherent linear correlation that exists between EVI and LAI for the April to October growing period of 2005–2008, producing r-values of 0.85–0.95 and p-values < 0.0001. Comparison of MODIS-based LAI with field-based measurements using the Tracing Radiation and Architecture of Canopies (TRAC) sensor and LAI-2000 Plant Canopy Analyzer showed reasonable agreement across values; statistical comparison of LAI data points produced an r-value of 0.71 and a p-value <0.0001. Seventy one percent of MODIS-based LAI were within ±20% of field estimates. OPEN ACCESS Remote Sensing 2010, 2 279
منابع مشابه
Analysis of LAI in Iran based on MODIS satellite data
This study was performed to evaluate the extent of leaf area in Iran from (2002) to (2016) using Remote sensing. For this purpose, we extracted data collection and leaf area index for the Iranian territory from MODIS website. The database was established with programming in MATLAB software to perform mathematical and Statistical calculations repeated. After the analysis of the data in this soft...
متن کاملInvestigating the 15-year-old seasonal variations in leaf area index using MODIS sensors in Iran
Today, it is widely used satellite imagery to monitor vegetation cover. The aim of this study is to analyses the leaf area in the period of 1395-1381 with the spatial resolution of a kilometer using the data of two remote sensing products of MODIS Terra and Aqua and seasonally. For this purpose, data were analyzed and statistical-mathematical compilation, coding and database creation were done ...
متن کاملAssessment of the MODIS Leaf Area Index Product (MOD15) in Alaska
The Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) Product (MOD15A2) was evaluated for the growing seasons of 2000 through 2004 in Alaska. The LAI estimate may be affected by three factors not directly related to canopy leaf area: snow melt, cloud contamination and conifer forest versus broadleaf shrub canopy type. Increases in MODIS LAI values occurred during the s...
متن کاملRemote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)
Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...
متن کاملRemote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)
Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 2 شماره
صفحات -
تاریخ انتشار 2010